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Abstract

Compositional data are rarely analyzed with the usual
multivariate statistical methods. One approach to model
such data is Dirichlet regression. We present various di-
agnostic methods for Dirichlet regression models. We
discuss the use of quantile residuals to check the distri-
butional assumptions. Measures of total variability and
goodness of fit are proposed to assess the adequacy of
the suggested models. An R-square measure based on
Aitchison’s distance is introduced. The likelihood dis-
tance is employed to identify the influential compositions.
Finally, an example with real data is presented and dis-
cussed.

Keywords: Compositional data, Dirichlet regression,
Aitchison’s distance, explained variation, quantile resid-
uals.

1 Introduction

Compositional data are non-negative proportions with
unit-sum which occur in nearly all disciplines, but recog-
nition and modelling of their basic structure have gotten
particular attention in geology, chemistry, political sci-
ence, business and economics. For example, a standard
such data set notes the relative composition of sediments
(sand, clay, silt) in an arctic lake (Aitchison, 1986). The
usual multivariate covariances and correlations for such
data can be misleading since the data are constrained to
sum to one and hence the traditional multivariate statis-
tical techniques can not be used.

Aitchison (1986) suggested an analysis based on the lo-
gratios of the compositional data so the traditional mul-
tivariate techniques can be applied on the transformed
data. Campbell and Mosimann (1987) developed an al-
ternative approach by extending the Dirichlet distribu-
tion to a class of Dirichlet Covariate Models (Dirichlet
Regression).

The estimation in Dirichlet regression and the asymp-
totic properties of the estimates have been investigated
by Campbell and Mosimann (1987) and Hijazi (2003).
The examination of the residuals and the diagnostics is
of great importance in regression analysis. In this paper,
we propose the use of pseudo (quantile) residuals as a
tool in checking the distributional assumption in Dirich-
let regression and identifying the outlying compositions.
Also, we propose different R2 measures to assess the fit
of the Dirichlet models to the compositional data. Two
influence diagnostics based on Chi-square statistic and
likelihood distance are presented to identify the influen-

tial compositions. Finally, an application to illustrate the
use of the proposed techniques is introduced.

2 Dirichlet Regression

Let x =(x1, ..., xD) be a 1 × D positive vector hav-
ing Dirichlet distribution with positive parameters
(λ1, ..., λD) with density function

f(x) =

(
Γ(λ)/

D∏

i=1

Γ(λi)

)
D∏

i=1

xλi−1
i (1)

where
D∑

i=1

xi = 1 and λ =
D∑

i=1

λi.

A Dirichlet regression model is obtained by allowing
the parameters of a Dirichlet distribution to change with
a covariate. For a given covariate s, the parameters of
a Dirichlet distribution D(λ1, ..., λD) can be written as
positive functions hj(s) of the covariate s. A different
Dirichlet distribution is modelled for every value of the
covariate, resulting in a conditional Dirichlet distribution
with x|s is D(h1(s), ..., hD(s)). The density function of
this conditional distribution is

f(x|si) =


Γ




D∑

j=1

(hj(si))


 /

D∏

j=1

Γ(hj(si))




D∏

j=1

x
hj(si)−1
j

and the conditional mean would be

E(X|s) =
(

h1(s)
h(s)

, ...,
hD(s)
h(s)

)

where h(s) =
D∑

i=1

hi(s).

The maximum likelihood method is used to estimate
the parameters of the suggested model (Ronning, 1989;
Campbell and Mosimann, 1987a; Hijazi, 2003). The
asymptotic properties of the maximum likelihood es-
timates have been thoroughly investigated by Hijazi
(2003).

Once the estimation has been accomplished, we focus
on assessing the fit of the Dirichlet models to the com-
positional data. generally, the likelihood-based methods
depend on the parametric assumption and a misspecifi-
cation of the model may lead to inaccurate results. It
is then of great importance to investigate the validity of
the parametric assumption. Examination of the resid-
uals, goodness-of-fit measures and influence diagnostics
are widely used in model assessment in regression anal-
ysis. For Dirichlet regression, residuals and diagnostics
are presented to investigate the goodness of fit of the es-
timated models.
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3 Residuals

Based on the properties of Dirichlet distribution, the
marginals of the Dirichlet distribution are single beta
distributions. In others words, if X =(X1, ..., XD) is dis-

tributed as D(λ1, ..., λD) and λ =
D∑

i=1

λi, then the random

variable Xj has a beta distribution with parameters λj

and λ− λj ; i.e. B(λj , λ− λj) for 1 ≤ j ≤ D with F (xj)
being the cumulative distribution function. By proba-
bility integral transform, pj = F (xj) follows a uniform
distribution. The pseudo-residual, rj , corresponding to
the observation xj is given by rj = Φ−1(pj), where Φ−1

is the inverse cumulative distribution function of the stan-
dard normal distribution. If the Dirichlet distribution is
the correct model with beta marginals, the pseudo residu-
als, rj ’s, follow the standard normal distribution and can
be treated as standardized residuals in linear regression
(Zucchini and MacDonald, 1999).

4 R2-Type Measures

In classical regression analysis, the coefficient of determi-
nation R2 is used as a measure of explained variation.
It has the interpretation as the proportion of explained
variation in the dependent variable by the predictor vari-
ables of a given regression model. For Dirichlet regres-
sion, we need a numerical measure to evaluate model per-
formance like the usual R2 measure. In this section, we
suggest three R2 measures based on model likelihoods,
total variability and sums of squares.

4.1 R2-measure based on model likelihoods

Different R2 measures have been proposed to evaluate
regression models. The likelihood-ratio R2 (R2

L) has
been widely used in the general linear models (Maddala,
1983), logistic regression (Magee, 1990) and Cox regres-
sion (Schemper, 1992). This measure is defined as

R2
L = 1−

[
L(θ̂0)

L(θ̂1)

] 2
n

(2)

where L(θ̂0) and L(θ̂1) are the likelihoods of the constant
and the covariate models respectively. The R2

L measures
the proportional improvement in the log-likelihood func-
tion due to the explanatory variable in the model, com-
pared to the minimal ”constant” model.

4.2 R2-measure based on total variability

When introducing the logratio analysis, Aitchison (1986)
suggested a measure of total variability based on the vari-
ation matrix of the transformed logratio data, T(x) de-
fined as

T(x) = [τij ] = [var {log(xi/xj)}] (3)

Obviously, T(x) is symmetric with zero diagonal ele-
ments. Aitchison’s total variability measure totvar(x) is
defined as

totvar(x) =
1
d

∑

i<j

[var {log(xi/xj)}] =
1
2d

∑
T(x) (4)

Aitchison compares the total variability of the observed
data and the fitted data to obtain an R2 measure (call it
R2

T ) defined as

R2
T = totvar(x̂)/totvar(x) (5)

where x is the observed data and x̂ is the fitted data.

4.3 R2-measure based on the sum of squares

The R2 in ordinary least-squares regression is defined by
R2=1-SSE/SST, where SSE and SST denote the sum of
the squared residuals and the sum of the squared dis-
tances from the mean, respectively. A general form of
this R2 is called the proportion of explained variation
(PEV ) and given by

PEV =

∑
i

D(yi)−
∑
i

D(yi|xi)
∑
i

D(yi)
(6)

where D(yi) and D(yi|xi) represent a measure of the dis-
tance of yi from a central location parameter, uncondi-
tional or conditional on a covariate xi.

In the simplex geometry, Aitchison (1986) proposed
Aitchison’s distance (∆S) as a measure of the distance
between two compositions. This distance is given by

∆S(X,x) =

[
D∑

i=1

{
log

Xi

g(X)
− log

xi

g(x)

}2
]1/2

(7)

where g(y) is the geometric mean of the composition y.
Aitchison, Barcelo-Vidal, Martin-Fernandez (2000) em-
phasize that (7) defines a metric on the simplex and
has all the necessary properties required in compositional
data analysis. Pawlowsky-Glahn and Egozcue (2002) in-
vestigated the invariance properties of ∆S. Further, they
showed that ∆S(X, ξ) is minimized at the center ξ given
by ξ = agl(E[alrX]), where alr is the additive logratio
transformation and agl is its inverse (Aitchison, 1986).

Now, let X be a set of n compositions x1, ...,xn and
x̂1, ...,x̂n be the fitted compositions. Then, the center of
X is given by

g = C



(
n∏

i=1

xi1

) 1
n

, ...,

(
n∏

i=1

xiD

) 1
n


 (8)

where C is the closure operation (Aitchison, 1986).
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The compositional total sum of squares (CSST) and
the compositional sum of squared residuals (CSSE) are
then given by

CSST =
n∑

i=1

∆2
S(xi,g) (9)

and

CSSE =
n∑

i=1

∆2
S(xi, x̂i) (10)

Finally, our suggested R2 measure; R2
A is given by

R2
A = 1− CSSE

CSST
(11)

It is noteworthy that the R2
A measure can be used in

logratio analysis as well.

5 Influence Diagnostics

Diagnostics in regression analysis include inspection of
leverages and other influence measures like Cook’s dis-
tance and likelihood displacement (Cook and Weisberg,
1982). Different methods have been suggested to detect
the outliers in compositional data (Barcelô et al., 1996;
Baxter, 1999) where visual assessment of compositions
seems inappropriate. These methods are appropriate for
unconditional compositions. When compositions depend
on a covariate, residuals can be used to identify outlying
compositions. Aitchison (1986) described the method of
outliers detection in logratio analysis. We can use the
joint distribution of the quantile residuals to identify the
compositions with large Mahalanobis distance (Mardia et
al., 1979) as outliers. Two measures are proposed to de-
tect the influential compositions in Dirichlet regression.
The first is based on Chi-squared statistic while the sec-
ond is the likelihood distance.

5.1 Pearson Chi-Squared Statistic

Consider the composition x =(x1, ..., xD) where
D∑

i=1

xi =

1, then we can treat this composition as multinomial
probabilities. Thus, we can use the Pearson Chi-squared
goodness of fit to compare the observed and the predicted
compositions. For Dirichlet distribution with parameters
Λ = (λ1, ..., λD), Boyles (1997) introduced the following
modified chi-squared statistic

X2 = (λ + 1)
D∑

i=1

(xi − µi)
2

µi
(12)

where µi = λi

λ and λ =
D∑

i=1

λi.

Boyles showed that the later statistic is asymptotically
distributed as chi-square with D − 1 degrees of freedom.
The simulation studies have indicated that the use of the
maximum likelihood estimates instead of the parameters

will result in the same sampling distribution. The later
statistic is then used to identify the outlying and influen-
tial compositions with large chi-squared values.

5.2 Likelihood distance

Let `(θ) be the log-likelihood function for the Dirichlet
regression, the likelihood displacement (Cook el al., 1988)
is defined by

LDj = 2
[
`(θ̂)− `(θ̂(j))

]
(13)

where θ(j) is the maximum likelihood estimate after delet-
ing the jth composition.

6 Example: Arctic lake sediments data

This example concerns the composition of 39 sediments
taken from an Arctic lake. Each point represents the
composition of sand, silt, and clay at different depths in
a Arctic lake (Aitchison 1986). It is believed that the
structure of this composition depends on the depth (s)
where the sediment was taken. The ternary diagram in
figure (1a) shows the distribution of the sediments. The
effect of the depth as a covariate is expressed in figure
(1b). Obviously, large values of the covariate are asso-
ciated with a low proportion of the sand. Conversely,
small values of the covariate correspond to large propor-
tions of the sand and relatively higher proportions of silt
and clay. The effect of the covariate is clearly curved as
depicted in the ternary diagram. This relationship sug-
gests that models based on constant parameters will not
describe the variability well. Linear Dirichlet regression
model with the water depth as a covariate is rejected in
favor of the quadratic model based on likelihood ratio test
(Casella and Berger 2002). The estimated parameters of
the quadratic model are

λ̂sand = 5.240− 0.072s + 0.001s2

λ̂silt = 3.426− 0.203s + 0.011s2

λ̂clay = 3.635− 0.391s + 0.013s2

The observed and predicted compositions are shown is
Figure (1a). The model shows a good fit for the com-
positions in the simplex. The fitted model follows the
curvature of the compositions but fails to get closer to
the 6-composition cluster in the top of the simplex. Now,
we compare the performance of the model based on the
marginal distributions. Figure (2a-c), shows the marginal
distributions of the compositions and the fitted model
against the water depth. The model appears to fit the
three components well especially and follows the nonlin-
ear form of the data quite well. Overall, the Dirichlet
quadratic model shows a good performance in fitting the
individual components as well as the compositions in the
simplex.

After the fit of the model, the pseudo residuals are
computed and used to produce the residuals plots and
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Figure 1: (a) Distribution of the sediments in the simplex (b) Distribution of sediments as a function of water depth
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Figure 2: The marginal distributions, the residual plots and the normal probability plots for the sediments data

ASA Section on General Methodology

1194



•

• • • • • • •

•

• •

•

• • • • •

•

•

•

• • •
•

•

•
• • • • • •

• •
•

•

•

•

•

Index

Li
ke

lih
oo

d 
D

is
ta

nc
e

0 10 20 30 40

0
1

2
3

(a)

• •
•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
• •

•
•

•

• •
• •

Index

C
hi

-S
qu

ar
e 

S
ta

tis
tic

0 10 20 30 40

0
2

4
6

8
10

(b)

Figure 3: (a) The likelihood distance and (b) The chi-square statistic plots for the sediments data
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the normal probability plots shown in the second and
the third rows in Figure (2). An inspection of these plots
reveals that there is no indication of violation of the para-
metric assumption or model misspecification.

The three proposed R2 measures are R2
L=97.56,

R2
T =53.78% and R2

A= 60.65%. The likelihood-based
measure is extremely high due to the strong dependence
of the sediment compositions on the water depth. The
other two measures are more conservative but show mod-
erate percentage of explained variation by the Dirichlet
model. The marginal plots of the compositions in Figure
(2a-c) show moderate relationships between the compo-
sitions and the water depth. This is consistent with the
values of R2

T and R2
A. Diagnostic plots are given in Figure

(3). The two plots show that the 12th composition has
the largest chi-square statistic and likelihood distance.
This composition has the largest influence and it’s the
closest to the sides of the ternary diagram in Figure (1).
The very small proportion of the clay in the composi-
tion (0.006) is inconsistent with the corresponding wa-
ter depth (24.4) which explains the large influence of the
composition. It is noteworthy that this composition has
the largest Aitchison’s and Mahalanobis distances and it
has been identified as an outlier by Barcelô et al. (1996).

When we fitted the Dirichlet regression without the
12th composition, the estimated parameters of silt com-
ponent show the highest change. The R2 measures for
the new model are 97.82%, 59.93% and 67.5% respec-
tively. The most influential composition turns to be the
one with the smallest proportion of sand.

7 Concluding Remarks

In this paper, we have investigated the residual analysis
and diagnostics checking in modelling compositional data
using Dirichlet regression. The quantile residuals are de-
veloped and used to check the parametric assumptions
and severe misspecification of the model. Three R2 mea-
sures have been proposed to assess the model and express
the proportion of explained variation in the compositions
by the covariate. Visual assessment of the outlying and
influential compositions might be misleading. A modi-
fied Chi-squared statistic and the likelihood distance have
been employed in identifying the influential compositions.
Finally, an example with real compositional data was pre-
sented to illustrate the proposed techniques.

References

Aitchison, J. (1986), The Statistical Analysis of Compositional
Data, Chapman and Hall, New York.

Aitchison, J., Barcelo-Vidal, C., Martin-Fernandez, J. A. and
Pawlowsky-Glahn, V. (2000), “Logratio analysis and compo-
sitional distance,” Mathematical Geology, 32(3), 271–275.
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